Predictive Random Fields: Latent Variable Models Fit by Multiway Conditional Probability with Applications to Document Analysis

نویسندگان

  • Andrew McCallum
  • Xuerui Wang
چکیده

We introduce predictive random fields, a framework for learning undirected graphical models based not on joint, generative likelihood, or on conditional likelihood, but based on a product of several conditional likelihoods each relying on common sets of parameters and predicting different subsets of variables conditioned on other subsets. When applied to models with latent variables, such as the Harmonium, this approach results in powerful clustering models that combine the advantages of conditional random fields with the unsupervised clustering ability of popular topic models, such as latent Dirichlet allocation and its successors. We present new algorithms for parameter estimation based on contrastive divergence. Experimental results show significant improvement in inferring hidden document categories, and learning models of authors, words, topics and time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Conditional Learning for Joint Probability Models with Latent Variables

We introduce Multi-Conditional Learning, a framework for optimizing graphical models based not on joint likelihood, or on conditional likelihood, but based on a product of several marginal conditional likelihoods each relying on common sets of parameters from an underlying joint model and predicting different subsets of variables conditioned on other subsets. When applied to undirected models w...

متن کامل

Discovering Fine-Grained Sentiment with Latent Variable Structured Prediction Models

In this paper we investigate the use of latent variable structured prediction models for fine-grained sentiment analysis in the common situation where only coarse-grained supervision is available. Specifically, we show how sentencelevel sentiment labels can be effectively learned from document-level supervision using hidden conditional random fields (HCRFs) [10]. Experiments show that this tech...

متن کامل

Exact Decoding on Latent Variable Conditional Models is NP-Hard

Latent variable conditional models, including the latent conditional random fields as a special case, are popular models for many natural language processing and vision processing tasks. The computational complexity of the exact decoding/inference in latent conditional random fields is unclear. In this paper, we try to clarify the computational complexity of the exact decoding. We analyze the c...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

Analysis of Birth Spacing Using Frailty Models

Background and objectives: Birth spacing is an important variable for identification of fertility acceleration, total fertility rate, and maternal and fetal health. Therefore, special attention has been paid to this issue by researchers in the fields of medical sciences, health, and population. In addition, proper analysis of this concept is of foremost importance. Application of classical anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005